EventListener library

Frantz Maerten

[geoss

Contents

O UL O O W b

11

12

13

15

mailto:frantz.maerten@igeoss.com
file:www.igeoss.com

1 Introduction

This package recreate an Event pattern similar to the one used in Java. It uses the
patterns Listener and Observer/Observable to connect objects between them by mean of
listeners, and create communication by propagating events.

Events can be emitted from anywhere through a Publisher and be intercepted by a
Subscriber which can listen to these Events by using appropriate Listeners or having
a method with the type of event as pointer argument.

In most common cases, client code will use a Publisher to emit custom Events, and a
Subscriber to receives events, the connection being done by the use of the igs_connect
template function. Other classes of this package can be avoided (EventFilter, Listener,
etc...).

2 Revisions

e 20060103
Added priority Listener for a given Event type. The priority can be changed dy-
namically if necessary. Little drawback in speed.

e 20051213
Simplified interface for Publisher.

e 20051212
Added MultiplexerListener class to simplify Listener declarations.
It is now possible to avoid creating a Listener class for a given Event. Three tem-

plated functions are introduced to simplify the mechanisum of connection/disconnection:

— igs_connect (Publisher*, Subscriber*, igs functor/igs function,int)

— igs_disconnect(Publisher*, Subscriber*, igs functor/igs_function,int)

— igs_get_listener (Publisher*, Subscriber*, igs functor/igs function,int)

e 20051126
Added ListenerForEvent<E> class to simplify Listener declarations.
Use now std: :1list instead of std: :vector, for performance reasons.

e 20051014
First revision of the package which is fully functional.
3 Performaces

All the tests were performed on a Pentium IV, 600 Mhz (Laptop Dell Latitude D800)
using gce-3.4.3 on Mandriva Linux 10.1

3.1 Listener

1. 0.85us per event, or 0.85 second for 1 millions of events
2. 15 times faster than boost: :signals

3. 5 times faster than Qt Signal/Slot

It can be noted that the use of ListenerForEvent<E> is 5 times slower than using a
classical Listener, since a special filter is used, and that a new pure virtual method is
added.

3.2 MultiplexerListener

1. 1.02us per event, or 1.02 second for 1 millions of events
2. 14 times faster than boost: :signals

3. 4.5 times faster than Qt Signal/Slot

4 Recommandations

1. We recommand to inherits your class from Subscriber in order to auto-removed
the installed listeners (done in Subscriber).

2. In most cases you will only use igs_connect and igs_disconnect to connect/disconnect
to a given event type. Using these functions allows to avoid using and creating a
Listener for a given Event, as it is automaticaly created.

Features

. Listeners support the notion of priority. When two listeners are connected to a same
event type, they are called according to their priority. The priority can be changed
at any time if necessary. When Listeners have the same priority, the are called in
the order of registration. This priority is set to 0 by default, and can be specified
by the igs_connect method (last parameter).

. Listener and Subscriber supports EventFilter and can have more than one

. Subscribers can:

(a) Inherit from Listener, and override the virtual functions

(b) Use listeners with the add_listener () method with a igs: :Function con-
nected to.

. Source of the event (Publisher) available when:

(a) Receiving an event. The Event class has the appropriate method.

(b) A member function of a Subscriber is called due to an event. The Publisher
is, in that case, available only within the function scope.

. Pluggable EventFilters for:

(a) Listener

(b) Subscriber
. Block/unblock events from sending/receiving for:

(a) Listener (sending)
(b) Publisher (sending)

(c) Subscriber (receiving)
. Auto unregistration of:

(a) Subscribers and their associated Listeners when deleted

(b) Listeners when a Publisher is deleted
. Auto deletion of:

(a) Events after posting
(b) EventFilters when they are not used anymore

(c) Listeners when a Subscriber is deleted

. Auto listening of methods of type myevent (EVENT*)

6 Classes

This package is a very light one. It uses few classes to describe this event pattern:

6.1 Event

The argument which is propagated from the Publisher to the Subscriber by the use of
Listener. There can be as many types of Events as needed.

Event inherits from GenObject, and therefor is a smart-pointer. You don’t have to worry
about deallocations of events after emission.

Its interface is:

class Event {
public:
Publisher* get_source() const ;

s

6.2 Listener

This class is responsible of doing the connection of a Subscriber to a Publisher for an
Event of a given type. Listener have a unique ID, which is used to retrieve it from a
Subscriber, in order to disconnect it or add EventFilters if necessary.

Another derived class ListenerForEvent<EVENT> can also be used. This class specialize
the Listener class for a given event template parameter EVENT. The pure virtual method
process_event (Eventx) is replaced by the specialized one process_event (EVENT*), where
EVENT is the template parameter.

6.3 Publisher

This class is responsible of posting Events. Posting events can be done from the Publisher
directly, or outside since the method Publisher: :post_event (Event*) is public.
Its interface is:

class Publisher {

public:
int post_event(Event* e) ;
void block_all_events() ;
void unblock_all_events() ;

s
and the related macro is:

igs_emit (EVENT) ;

6.4 Subscriber

Classe which connect to a Publisher in order to receives Events of a certain type, by the
use of Listener. Any Subscriber interested in a given Event from a Publisher, can
subscribe for receiving Events by using an appropriate Listener.

Its interface is:

class Subscriber {

public:
Listener::ID add_listener(Listenerx 1) ;
Listener* get_listener_with_id(const Listener::ID&) const ;
bool remove_listener_with_id(const Listener::ID& id) ;
void remove_all_listener() ;
void add_event_filter(Listener::ID, EventFilterx*) ;
void add_event_filter (EventFilterx) ;
void remove_all_event_filters() ;
void block_events() ;
void unblock_events() ;

s
and the related macro is:

igs_add_listener (PUBLISHER, LISTENER, FUNCTION)

6.5 EventFilter

When Events are posted, sometime it is interresting to filter them, in order to only receive
only appropriate Events. This class is used for that purpose.

A derived class EventFiltering is also defined, which allows to automatically filter events
of a given type. This class is used in the ListenerForEvent<EVENT>.

Its interface is:

class EventFilter {
public:

virtual bool filter(Event* e) = 0 ;
s

6.6 MultiplexerListener

A derived class from Listener. Since receiving an event is characterized by a unique
signature of a method (for example void receives_eventl(Eventlx)), it is possible to
simplify the definition of the pair (Event,Listener). The use of the MultiplexerListener
allows this feature, by only defining Event classes, and to listen to these events in a simple
way.

The Subscriber methods to connect to any type of Event take only the event type as
parameter. Using this class, it is unecessary, when creating a event of a given type, to
create its corresonding listener.

6.6.1 igs_connect and igs_disconnect

Using the igs_connect and igs_disconnect global template functions facilitate the pro-
cessus of connection and disconnection.
The interfaces are:

template <typename E>
Listener::ID igs_connect(Publisher* publisher,
Subscriber* susbscriber,
const basic::functionl<void, Ex>& f,
unsigned int priority=0) ;
template <typename E>
bool igs_disconnect(Publisher* puslisher,
Subscriber* subscriber,
const basic::functionl<void, Ex>& f) ;

and the related macros are:

igs_functor (SUBSCRIBER, METHOD) ;
igs_function(FUNCTION) ;

Example of use:

class Eventl: public Event {} ;
class Event2: public Event {} ;
class Event3: public Event {} ;

class S: public Subscriber {

public:
void eventl(Eventl*) {std::cerr << "i\n" ;}
void event2(Event2x*) {std::cerr << "2\n" ;}
void event3(Event3*) {std::cerr << "3\n" ;}

s

int main() {
Publisher p ;
S s
igs_connect (&p, &s, igs_functor(&s, S::eventl)) ;
igs_connect (&p, &s, igs_functor(&s, S::event2)) ;
igs_connect (&p, &s, igs_functor(&s, S::event3)) ;
p.igs_emit (Eventl) ;
p.igs_emit (Event2) ;
p.igs_emit (Event3) ;
igs_disconnect (&p, &s, igs_functor(&s, S::event3)) ;
p.igs_emit(Event3) ; // never received

by

Here, we see that no special Listener for each Event is created, and that the MultiplexerListener
class is used through the igs_connect function to listen to the special events defined by

6

the S member functions. This class automatically recognize the Event type argument and
do the necessary connections.

Note that the igs_connect returns the created Listener, which allows you block/unlock,
add EventFilter and remove it from the Subscriber.

The reason why the igs_connect takes a Subscriber pointer and the repeated Subscriber
pointer within the functor definition, is because you can use a functor from another class,
or a C function as in the following code:

class S {
public:
void eventl(Eventlx) {}
void event2(Event2x) {}
s

void event3(Event3x) {}

int main() {
Publisher* pub = new Publisher ;
Subscriber sub ;
S* s = new S ;

igs_connect (pub, sub, igs_functor(s, S::eventl)) ;
igs_connect(pub, sub, igs_functor(s, S::event2)) ;

igs_connect (pub, sub, igs_function(event3)) ;

pub->igs_emit (Event3) ;

7 Example 1: Templated events

This example show a very simple way to use templated events:

template <typename T>
class TEvent: public Event {
public:
TEvent (const T& t): t_(t){}
const T& t() const {return t_ ;}
private:
T t_ ;
s

class S: public Subscriber {
public:
template <typename T>
void receives_event (TEvent<T>* e) {
std::cerr << "receives " << typeid(T).name() << ": " << e->t() << std::endl ;
}
s

int main() {
Publisher p ;
S s ;

igs_connect (&p, &s, igs_functor(&s, S::receives_event<double>)) ;
igs_connect (&p, &s, igs_functor(&s, S::receives_event<std::string>)) ;
p.igs_emit (TEvent<double>(1.23)) ;

p.igs_emit (TEvent<int>(123)) ;

p.igs_emit (TEvent<std::string>("Hello World")) ;

std::cerr << std::endl ;

igs_disconnect(&p, &s, igs_functor(&s, S::receives_event<double>)) ;
igs_disconnect (&p, &s, igs_functor(&s, S::receives_event<std::string>)) ;
igs_connect (&p, &s, igs_functor(&s, S::receives_event<int>)) ;
p.igs_emit(TEvent<double>(1.23)) ;
p.igs_emit (TEvent<int>(123)) ;
p.igs_emit (TEvent<std::string>("Hello World")) ;

}

Will print:

S receives d: 1.23
S receives Ss: Hello World

S receives i: 123

8 Example 2: Using EventFilter

class DoubleEvent: public Event {
public:
DoubleEvent (double d): d_(d) {}
double d() const {return d_ ;}

public:
double d_ ;
s
class S: public Subscriber {
public:
void event(DoubleEvent* e) {std::cerr << "d = " << e->d() << std::endl ;}
s

class SFilter: public EventFilter {
public:
SFilter(double limit): limit_(limit) {}
virtual bool filter (Event* e) {
DoubleEvent* ee = dynamic_cast<DoubleEvent*>(e) ;
if (ee && ee->d()>=limit_) return false ;
return true ;
}
private:
double limit_ ;
s

int main() {
Publisher* p = new Publisher ;
S*¥ s = new S ;

igs_connect(p, s, igs_functor(s, S::event)) ;

// Add the filter not to S but to the Listener

Listener* 1 = igs_get_listener(p, s, igs_functor(s, S::event)) ;
assert(1 != NULL) ;

1->add_event_filter(new SFilter(100)) ;

p—>igs_emit (DoubleEvent (50)) ;
p—>igs_emit (DoubleEvent (99)) ;
p—>igs_emit (DoubleEvent(100)) ; // never received
p—>igs_emit (DoubleEvent(200)) ; // never received
p—>igs_emit (DoubleEvent (1)) ;

}

Will print:

50
99

10

9 Example 3: Event recorder

class Eventl: public Event {} ;
class Event2: public Event {} ;
class Event3: public Event {} ;
class Event4: public Event {} ;

class A: public Subscriber {

public:

void
void
void
void

s

eventl(Eventlx*) {std:
event2 (Event2*) {std:
event3(Event3*) {std:
event4 (Event4x*) {std:

int main() {
EventRecorder recorder ;
recorder.igs_record(Event1)
recorder.igs_record(Event4)
recorder.igs_record(Event2)
recorder.igs_record(Event3)

Publisherx

Ax a

a
a
a
a

recorder.play(p) ;

}

Will print:

W N =

b

3

3

3

.cerr
.cerr
.cerr
.cerr

b
b
)

)

p = new Publisher ;
= new A ;
igs_connect (p,
igs_connect (p,
igs_connect (p,
igs_connect (p,

, igs_functor(a,
, igs_functor(a,
, igs_functor(a,
, igs_functor(a,

<<
<<
<<
<<

= e e >

11

|l1\n|l
"2\n" ;
"3\n" ;
"o

-

]

::eventl))
::event2))
::event3))
::eventd))

I
I
I

I

10 Example 4: CD Player

class StartEvent: public Event {} ;
class StopEvent : public Event {} ;

class CDPlayer: public Subscriber {
public:

void start(StartEvent*) {std::cerr << "Start the CD player\n" ;}
void stop (StopEventx*) {std::cerr << "Stop the CD player\n" ;}
s

template <typename E>

class Button: public Publisher {
public:

void click() {igs_emit(E) ;}
s

int main() {
Button<StartEvent> start_button ;
Button<StopEvent> stop_button ;
CDPlayer cd ;

igs_connect (&start_button, &cd, igs_functor(&cd, CDPlayer::start)) ;
igs_connect (&stop_button , &cd, igs_functor(&cd, CDPlayer::stop)) ;

start_button.click() ;
stop_button. click() ;

12

11 Example 5: RadioStation

using namespace listener ;

class Message: public Event {
public:
Message(const std::string& m): m_(m) {}
const std::string& message() const {return m_ ;}
private:
std::string m_ ;

+

class RadioOff: public Event {

r

class RadioStation: public Publisher {

public:
RadioStation(const std::string& name): name_(name) {}
“RadioStation() {igs_emit (RadioOff) ;}
void send(const std::string& m) {igs_emit(Message(name_+": "+m)) ;}
const std::string& name() {return name_ ;}

private:
std::string name_ ;

r

class Receiver: public Subscriber {

public:
void message(Message* e) {

std::cerr << e->message() << std::endl ;

}

void radio_off(RadioOff* e) {
RadioStation* s = dynamic_cast<RadioStation*>(e->get_source()) ;
std::cerr << "Radio " << s->name() << " is now off" << std::endl ;
}

Y

int main() {
RadioStation* radiol new RadioStation("105.5") ;
RadioStation* radio2 new RadioStation("98.3 ") ;
Receiverx r = new Receiver ;

igs_connect(radiol, r, igs_functor(r, Receiver::message)) ;
igs_connect(radiol, r, igs_functor(r, Receiver::radio_off)) ;
igs_connect(radio2, r, igs_functor(r, Receiver::message)) ;
igs_connect(radio2, r, igs_functor(r, Receiver::radio_off)) ;

13

radiol->send("News") ;
radio2->send ("Music") ;

delete radiol ;
radio2->send("Informations") ;

igs_disconnect(radio2, r, igs_functor(r, Receiver::message)) ;
radio2->send("Variety") ;

delete radio2 ;

+

Will print:
105.5: News
98.3 : Music

Radio 105.5 is now off
98.3 : Informations
Radio 98.3 1is now off

14

12 Example 6: Priority

Show how to use the priority. In this example, 3 Subscribers are created (s[i],0 < i < 2),
with different priorities. The higuest priority is 0 (default value).

using namespace listener ;

class EventO: public Event {

s
class S: public Subscriber {
public:

void receives(EventOx) {}
s

int main() {
Publisher p ;
S s[3] ;

// Connections using priority (last argument)

igs_connect (&p, &s[0], igs_functor(&s[0], S::receives), 110) ;
igs_connect (&p, &s[1], igs_functor(&s([1], S::receives), 2761) ;
igs_connect (&p, &s[2], igs_functor(&s[2], S::receives), 0) ;

p.igs_emit(EventO) ;
}

Order of call:

s[2] // with priority O
s[0] // with priority 110
s[1] // with priority 2761

15

	Introduction
	Revisions
	Performaces
	Listener
	MultiplexerListener

	Recommandations
	Features
	Classes
	Event
	Listener
	Publisher
	Subscriber
	EventFilter
	MultiplexerListener
	igs_connect and igs_disconnect

	Example 1: Templated events
	Example 2: Using EventFilter
	Example 3: Event recorder
	Example 4: CD Player
	Example 5: RadioStation
	Example 6: Priority

